
Variational Transition State Theory and Tunneling Calculations with Reorientation of the
Generalized Transition States for Methyl Cation Transfer
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The new RODS algorithm based on optimizing the orientation of the dividing suface at each point along the
reaction path in order to maximize the free energy of the generalized transition state containing that point has
been used to carry out variational transition state calculations and tunneling calculations for two reactions
with high-frequency vibrations strongly coupled to the reaction coordinate, (Cl-)(CH3NH3

+) f ClCH3(NH3)
and ClCH3 + NH3, and CH3Cl(H2O)+ NH3(H2O)f (CH3NH3

+)(Cl-)(H2O)2. These reactions, both of which
involve the transfer of a methyl cation between Cl- and NH3, show much larger variational-transition-state
and tunneling effects than were observed in previous studies of the transfer of methyl cations between anionic
centers. However, they are hard to study because the adiabatic potential energy curves of both reactions and,
as a consequence, the corresponding free energy of activation profiles show big dips when the minimum
energy path (MEP) is followed using standard methods, even when very small step sizes are taken to compute
the steepest-descent path. The application of RODS methodology eliminates those dips, giving rise to smooth
free energy of activation profiles and vibrationally adiabatic potential curves. Calculations of variational
rate constants and tunneling effects are significantly improved.

1. Introduction

The fundamental hypothesis of conventional transition state
theory (TST) is that, in terms of classical mechanics, no
trajectories in an equilibrium ensemble recross a transition-state
dividing surface (a hypersurface dividing reactants from prod-
ucts) centered at the saddle point on a potential energy
hypersurface.1 Because of this assumption, TST in a classical
world overestimates the thermal rate constants of chemical
reactions.1,2 Variational transition state theory (VTST) mini-
mizes this error by locating the transition-state dividing surface
such that it yields the smallest possible calculated rate constant.
It can be shown that this maximizes the free energy of
activation.3,4 In practice, one adds quantum mechanical effects
on modes transverse to the reaction coordinate by computing
the free energy of activation from quantum mechanical sums
over states rather than classical phase space integrals.5,6 This
must be justified by the existence of locally conserved vibra-
tional action variables that are seen to be clearly quantized in
accurate quantum mechanical calculations; these are the locally
adiabatic invariants of the motion.7

Prior to calculating the VTST rate constants, one must
compute generalized frequencies along the path in order to get
the free energy of activation profile. VTST calculations based
on a search along the minimum-energy path (MEP) for the best
location of the transition state have the drawback that they can
be very expensive to calculate the MEP, because small step

sizes are required to accurately compute an MEP.8 Furthermore,
if the MEP is not accurate, the generalized normal mode
frequencies corresponding to the usual dividing surface normal
to the path may be unphysical and differ greatly from the true
locally adiabatic invariants. In a previous paper9 a new practical
method for carrying out VTST calculations without evaluating
the MEP has been presented. In this method, for each point
along a reaction path (which is not necessarily the minimum-
energy path), the orientation of the dividing surface is optimized
in order to maximize the free energy of the generalized transition
state at that point. Another use of the proposed algorithm is
that it can be employed to extract a stable and meaningful free
energy of activation from an MEP-based calculation carried out
with large steps, where the usual procedure of orienting the
dividing surface normal to the gradient of the potential is
inaccurate.
During the past two decades, VTST has been applied to a

variety of chemical systems.10 A wide variety of reactions of
neutral species have been studied, with variational effects of
various magnitudes.10 Among ionic reactions, much attention
has been devoted to bimolecular ion-neutral reactions of the
SN2 and E2 type. In particular, considerable attention has been
dedicated to ion-molecule SN2 reactions such as11-15

with n ) 0, 1, or 2. It has been found for all ion-molecule

*Cl-(H2O)n + CH3Cl f *ClCH3 + Cl-(H2O)n (R1)
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SN2 reactions studied so far that variational effects (by which
we mean deviations of VTST predictions from TST ones) are
very small both for the transition-state location and for the
determination of the corresponding rate constant.11-18 For
instance, calculations based on a semiempirical, analytical
potential energy hypersurface indicate that the VTST rate
constant for reaction R1 is within 1% of the TST result at 300
K for n ) 0 and 1.15 These results may be attributed to the
facts that (i) as the system leaves the saddle point along the
reaction path, the energy tends to drop rapidly to negative values
associated with ion-dipole complexes, and (ii) the vibrational
frequencies change only slowly along the reaction path in the
vicinity of the saddle point. One E2 reaction has been studied,
namely,

Variational effects on the reaction rate in the central barrier were
found to be only about 4%.18

However, variational effects on reaction rates for SN2
reactions need not always be small. In this paper we present a
study of two reactions that show significant variational effects.
These systems are difficult to study because the vibrationally
adiabatic potential energy curves and the corresponding free
energy of activation curves have significant dips when the MEP
is followed using standard methods. We will show that the
application of the above mentioned new algorithm based on
the reorientation of the dividing surface (which will be called
RODS) eliminates the dips, giving rise to smooth free energy
of activation curves. In the original paper on the RODS
algorithm, three examples were used to validate the new
methodology. The present paper applies the RODS algorithm
for complete VTST calculations of more difficult cases involving
strong coupling of high-frequency modes to the reaction
coordinate. In particular, we study

and

The presence of microsolvating water molecules in R4 makes
the calculation of free energy of activation curves even less
stable than for the base case. Note that the unimolecular reaction
R3 can produce either a van der Waals complex or a pair of
separated neutral products; the exoergicities of these two paths
are 30.5 and 28.9 kcal/mol, respectively. Note, however, that
both paths go through the same transition state so transition
state theory can predict only the sum of the two rates. Reaction
R4 is a bimolecular reaction that produces a dihydrated ion pair;
the exoergicity of this reaction is 20.7 kcal/mol. For both R3
and R4 we consider the gas-phase high-pressure plateau. Thus
we consider that collisions are frequent enough to maintain an
equilibrium distribution of reactant energies for R3 and to
stabilize all products of both R3 and R4. We assume, however,
that the pressure is not so extraordinarily high that collisions
of bath molecules with the transition states would need to be
considered.
Reaction R4 is closely related to the Menshutkin reaction,

which has been widely studied.19 The Menshutkin analog of
R4 is

which is about 85 kcal/mol endoergic. Whereas the dynamical
bottleneck for R5 occurs during the dissociation of the product-
like ion pair, the rates of reactions R3 and R4 are both
determined by central transition states corresponding to transfer
of CH3

+. However, as compared to ion-molecule SN2 reaction
studied previously, the CH3+ transfer steps in R3 and R4 are
between a charged and a neutral fragment rather than between
two charged fragments.
In order to calculate reaction rates by variational transition

state theory, potential energy information is required at the
stationary points and along the reaction path. For the present
studies this information is obtained directly from electronic
structure calculations without the intermediacy of an analytic
fit; that is, we carry out “direct dynamics VTST”.13-17,20-23 By
design, the application of RODS methodology does not require
any additional electronic structure calculation.
Section 2 presents the details of the electronic structure

calculations and dynamical calculations. Section 3 presents the
results, and section 4 is the discussion. Section 5 summarizes
the principal conclusions.

2. Computational Methods

2.1. Electronic Structure. As our main purposes of this
work are to explore qualitative features of new reaction types
and to illustrate new methodology, it is not essential to include
electron correlation energy. Ab initio restricted Hartree-Fock
calculations24 were carried out using the split valence 6-31+G-
(d) basis set,25 which includes d polarization and diffuse
functions on the heavy atoms. Full geometry optimization was
carried out. Stationary points were characterized as minima or
saddle points by diagonalizing their Hessian (force constant)
matrices and confirming that there are zero or one negative
eigenvalue, respectively.
The minimum-energy path (MEP) was calculated in mass-

scaled Cartesian coordinates26,27 with a reduced mass,µ, of 1
amu by using the fourth-order Runge-Kutta method21 with a
variable step size. For R3 a maximum value of 0.0026 Å was
employed within the interval (-0.1 Å, 0.1 Å) of the MEP.
Beyond this interval, the maximum was 0.0079 Å. For R4,
the corresponding values were 0.0052 and 0.013 Å, respectively,
within the same intervals. Analytic Hessians were calculated
at selected points along the MEP, with the convergence criterion
explained in the following section. After diagonalizing the
projected Hessian30 at each point on the MEP, we obtain them
(wherem ) 1, 2, ..., 3N-7, andN is the number of atoms)
generalized normal-mode frequencies corresponding to the
modes orthogonal to the MEP (which are ordered in decreasing
order), which allow us to calculate the vibrationally adiabatic
ground-state potential curveVaG(s). This is defined by

wheres denotes distance along the MEP in the mass-scaled
system.27 The eigenvectorsLm obtained from the diagonaliza-
tion, along with the gradientv at the points on the MEP, are
used to computeBmF(s), the reaction-path curvature at each mode
m, in the usual way:27,30

ClO- + C2H5Cl f HOCl+ C2H4 + Cl- (R2)

(Cl-)(CH3NH3
+) f [ClCH3(NH3)

ClCH3 + NH3
(R3)

CH3Cl(H2O)+ NH3(H2O)f (CH3NH3
+)(Cl-)(H2O)2 (R4)

CH3Cl(H2O)+ NH3(H2O)f

{CH3NH3
+ + Cl-(H2O)2

CH3NH3
+(H2O)+ Cl-(H2O)

(R5)

Va
G(s) ) VMEP(s) + ZPE(s) (1)
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Partial charges on the atoms and groups (qX and qXHn,
respectively, where X and H denote atoms) were calculated for
interpretive purposes (they are not required for gas-phase
dynamics calculations) by the method of Mulliken population
analysis.28 For the final results, all electronic structure calcula-
tions were done using the GAMESS93 electronic structure
code.29

2.2. Dynamics. 2.2.1. Theory.Rate constants are calcu-
lated by canonical variational theory (CVT).27 This theory
yields hybrid rate constants corresponding to classical reaction
path motion with other degrees of freedom quantized. However,
since the rotational energy levels are generally closely spaced,
we approximate the quantal rotational partition functions by the
classical ones. For vibrations, the partition functions were
calculated quantum mechanically within the harmonic ap-
proximation in rectilinear coordinates.3,27,30

To include quantal tunneling effects for motion along the
reaction coordinate, CVT rate constants were multiplied by a
ground-state transmission coefficient.4,6,14,27,31,32 In particular
we employ zero-curvature tunneling5,6,26 (ZCT) and the cen-
trifugal-dominant small-curvature semiclassical adiabatic ground-
state31,32 (small-curvature tunneling or SCT) approximations.
The ZCT method corresponds to tunneling along the MEP, and
the SCT method allows corner cutting in the tunneling prob-
abilities.
2.2.2. Grids. The potential energy information (energies,

gradients, and Hessians), calculated at selected points along the
MEP, was used in a modified version of the POLYRATE
computer code, version 7.0,31,33 in order to carry out direct
dynamics studies of processes R3 and R4. To assure conver-
gence of the calculated rate constants, preliminary rate calcula-
tions with coarse Hessian grids were used to locate the regions
of the reaction path containing the temperature-dependent
variational transition states and the minima of the SCT reduced
mass, where the “corner cutting” aspect of the tunneling process
would be greatest. Finer grids were then calculated for these
critical regions to improve the accuracy of the calculated
canonical rate constants and small-curvature tunneling prob-
abilities. This strategy is sometimes called focusing.23 A total
of 79 and 67 Hessian grid points were finally used for reactions
R3 and R4, respectively.
The potential energy and generalized-normal-mode vibrational

frequencies were then interpolated to intervals of 0.0026 Å by
five-point Lagrangian interpolation. Both diabatic34 and adia-
batic correlations of frequencies along the MEP were carried
out (for the diabatic correlation a new methodology implemented
in one of our programs35was used). The reaction-path curvature
components at each step were evaluated by POLYRATE from
the corresponding generalized-normal-mode eigenvectors and
the derivatives of the gradient vectors.27

2.2.3. Reorientation of the DiViding Surface (RODS).In the
RODS algorithm we assume that a Taylor series of the potential,
valid through quadratic terms, is available for each of a series
of K points along a generic reaction path, which is not
necessarily the MEP. We specify these points ask ) 1, 2, ...,
K and let x denote our mass-scaled Cartesian36 coordinate
system. LetxL(k) denote theK points where the data are
available. Generally, the dividing surfaces, which are hyper-
planes inx passing through the differentxL(k), are obtained by
projecting the gradient and the overall translations and rotations
out of the Hessian matrix.30 In the RODS approach, we will

consider trial dividing surfaces that are orthogonal to the overall
rotations and translations and that pass through one of the points
xL(k). However, instead of projecting out the gradient, for each
kwe optimize the orientation of the dividing surface to maximize
the generalized free energy of activation of the generalized
transition state atk. In this way we obtain more physical
dividing surfaces especially when the calculations are unstable.
Details of the algorithm are given elsewhere,9 but we note that
s is still calculated by the fourth-order Runge-Kutta algorithm
even though the RODS algorithm slightly displaces the points
on the reaction path.

3. Results and Discussion

3.1. Stationary Points. Tables 1 and 2 give the energy,
relative to reactants, at stationary points along the MEP for
reactions R3 and R4; this quantity is labeledVMEP. Tables 1
and 2 also give geometrical parameters and partial charges
characterizing the stationary points. Both reactions can be
visualized as the transfer of a CH3+ group between Cl- and
NH3, accompanied by the umbrella inversion at CH3

+.
For reaction R3, the Cl, C, and N atoms are collinear along

the entire minimum-energy reaction path. The saddle point is
depicted in Figure 1, along with the imaginary frequency
eigenvector. One can observe that the main components of the
transition vector (whose eigenvalue gives an imaginary fre-
quency of 559i cm-1) correspond to the nitrogen atom separating
from the carbon atom. Therefore, the reaction coordinate is
fundamentally an asymmetric stretch at the conventional transi-
tion state. The neutralization of the chloride charge progresses
monotonically along the reaction path.
For the dihydrated reaction R4, the general effect of solvent

is to stabilize the supermolecule as the reaction progresses,
which is why this reaction would probably be studied experi-
mentally in the ion production direction, as written, rather than
in neutralization direction, as R3 is written. The dipole-dipole
complex is 5.1 kcal/mol below the reactants, and the energy
barrier referred to this complex is 25.6 kcal/mol. The product
ion-pair complex is stabilized by the hydrating water molecules
in such a way that it appears 15.6 kcal/mol below the dipole-
dipole complex.
Some aspects of the geometrical structures merit discussion.

At the reactants, one water molecule, called W(N), is hydrogen
bonded to one of the ammonia hydrogens, while the second
water molecule, called W(Cl), solvates the chlorine atom. As
the reaction proceeds, an interesting motion of the different
fragments takes place to stabilize the nascent charges. Initially
the reactants approach with nonlinear Cl-C-N arrangement
to give the dipole-dipole complex shown in Figure 2, in such
a way that the two water molecules are able to form a hydrogen
bond between them. In addition, the W(Cl) water molecule
continues to solvate the chlorine atom, and the W(N) water
molecule continues to solvate the ammonia. At the saddle point,
shown in Figure 3, the nitrogen, carbon, and chlorine atoms
are aligned. The N-C distance is short enough that both water
molecules still remain hydrogen-bonded to each other. We note
that the transition vector is very similar to the one associated
with the unhydrated reaction, such that no significant component
of motion of water molecules appears. Thus, the imaginary
frequency (551i cm-1) has an only slightly lower value than
for the R3 reaction. At the ion-pair product, shown in Figure
4, W(N) maintains the same interaction as at the saddle point;
that is, it solvates ammonia and is hydrogen-bonded to W(Cl),
whereas W(Cl) solvates the chloride anion. The methyl group
appears completely unsolvated. This structure is reasonable in

BmF(s) ) -[sign(s)]∑
i)1

3N dvi(s)

ds
Li,m
GT(s) (2)
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a dihydrated cluster where the chloride anion prefers to be
bonded to the most positive fragment of the supermolecule. This
combination of stabilizing interactions causes the ion-pair
product to lie in a deep well.
3.2. VTST Calculations Based on the Standard Algo-

rithm. 3.2.1. Runge-Kutta Calculations.The position of the
variational transition state corresponds to the maximum of the
free energy of activation profile at each temperature. At 0 K
that profile equals the vibrationally adiabatic ground-state
potential energy curve defined by eq 1. Solid lines in Figure

5a,b show the adiabatic ground-state potential energy curves
for reactions R3 and R4, respectively. To show the effect of
temperature, the solid lines in Figure 6a,b present the free energy
of activation profiles atT ) 300 K for these reactions. The
shapes of the profiles at the other temperatures considered are
similar to their shapes at 300 K. We note in Figure 5a,b
important dips appearing in the region near the saddle point,
which is the region that apparently governs the variational
effects. In order to analyze the regions of these dips, we next
examine the vibrational frequencies in these regions.
Figures 7 and 8 present the generalized-normal-mode vibra-

tional frequencies of the high-frequency generalized normal
modes versus the arc length along the reaction coordinate for
reactions R3 and R4, respectively. Note that the mode of
(Cl-)(CH3NH3

+) correlating with the imaginary normal mode
at the saddle point is not included because it is the reaction
coordinate. The generalized normal modes shown in these two
figures exhibit strong couplings at various points along the
reaction path. For that reason, we have preferred to make a
diabatic correlation in Figures 7 and 8. For the sake of
simplicity, only the generalized normal modes associated with
reactant frequencies above 1500 cm-1 are displayed.
In the unhydrated reaction R3, only one frequency changes

significantly in the vicinity of the saddle point. This general-
ized-normal-mode frequency takes values of around 3800 cm-1

along the incoming part of reaction path and decreases abruptly
just before the saddle point, where it reaches a local maximum
of 3813 cm-1. Another dip occurs on the product side of the
MEP. The analysis of the associated generalized-normal-mode
eigenvector along the reaction path shows that this mode
corresponds to a vibrational motion of the ammonia hydrogen
atoms in the 3800 cm-1 region. The two dips of this frequency

TABLE 1: Stationary Point Energies, Geometries, and Partial Charges for Reaction R3

species VMEP (kcal/mol) R(C-N) (Å) R(C-Cl) (Å) θ(H-C-N) deg θ(C-N-H) (deg) qCH3 (au) qNH3 (au) qCl (au)

(Cl-)(CH3NH3
+) 0.0 1.541 2.918 107.9 111.2 0.46 0.43 -0.89

saddle point 7.2 1.900 2.474 96.1 111.1 0.49 0.21-0.70
ClCH3(NH3)a -30.5 3.533 1.793 71.5 111.1 0.12 -0.01 -0.11
ClCH3 + NH3 -28.9 ∞ 1.786 0.06 0.00 -0.06

aDipole-dipole complex.

TABLE 2: Stationary Point Energies, Geometries, and Partial Charges for Reaction R4

species
VMEP

(kcal/mol)
R(C-N)
(Å)

R(C-Cl)
(Å)

R(N-Cl)
(Å) R(Cl-H)a

R(N-O)b
(Å)

qCH3
(au)

qNH3
(au)

qCl
(au)

qW(Cl)

(au)
qW(N)

(au)

CH3Cl(H2O)+ NH3(H2O) 0.0 ∞ 1.79 ∞ 2.84 3.04 0.11 -0.02 -0.10 0.00 0.02
CH3Cl(H2O)[NH3(H2O)]c -5.1 3.58 1.80 4.58 2.64 3.20 0.14-0.01 -0.12 -0.02 0.01
saddle point 20.5 2.04 2.38 4.41 2.34 2.99 0.51 0.16-0.63 -0.04 0.01
(CH3NH3

+)(Cl-)(H2O)2 -20.7 1.48 3.74 3.02 2.32 2.86 0.30 0.51-0.78 -0.04 0.01

aR(Cl-H) is the distance from Cl to the closest water H atom, andqW(Cl) is the partial charge on the water hydrogen that is bonded to Cl.
b R(N-O) is the distance from N to the closest water O atom, andqW(N) is the partial charge on the water hydrogen that is bonded to N.cDipole-
dipole complex.

Figure 1. Saddle point of the unhydrated reaction R3 along with
components of the transition vector in mass-scaled Cartesian coordi-
nates.

Figure 2. Dipole-dipole complex of the dihydrated reaction R4.

Figure 3. Saddle point of the dihydrated reaction R4 along with the
main components of the transition vector in mass-scaled Cartesian
coordinates.

Figure 4. Ion-pair product of the dihydrated reaction R4.
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just before and after the saddle point are explained by a strong
mode coupling that changes the components of the generalized-
normal-mode eigenvector which in those two zones correspond
to the motion of the ammonia hydrogen atoms plus the motion
of the nitrogen atom separating from the carbon atom. As a
consequence of the variation of this frequency, the total zero-
point energy goes down rapidly just before and after the saddle
point, as seen in Figure 5a.
For the dihydrated reaction R4, there are two frequencies,

labeled A and B in Figure 8, that change significantly in the
vicinity of the saddle point. For the frequency A three zones
can be distinguished. Coming from reactants, frequency A takes
values above 4000 cm-1. Just before the saddle point it drops
abruptly below 1500 cm-1. Finally, just after the saddle point,
where it has a value of 3659 cm-1, up to products it remains
nearly constant. In the first zone, the associated generalized-
normal-mode eigenvector involves primarily the movement of
the water hydrogen atoms. In the second zone, when the
frequency goes down, the normal mode consists of the motion
of the ammonia and W(N) water hydrogen atoms plus the N-C
stretching (the incorporation of these two heavy atoms causes

the dip of the frequency). In the third zone, this generalized-
normal-mode eigenvector becomes mainly a motion of the
ammonia hydrogen atoms.
Frequency B in Figure 8 takes values close to 4000 cm-1

from reactants up to the saddle point. Just at the saddle point,
this frequency begins to decrease to values below 1500 cm-1,
and then it recovers rapidly to values around 4000 cm-1. Its
associated generalized-normal-mode eigenvector successively
varies in the following way: first, it consists of the motion of
the water hydrogen atoms; then, it involves the movement of
the ammonia and W(N) water hydrogen atoms plus the N-C
stretching; finally, it becomes essentially the motion of the W(N)
water hydrogen atoms.
In summary, the frequency dips appear to be explained by

spurious mixing of high-frequency motions into the reaction
coordinate and the concomitant mixing of the heavy-atom
motion along the reaction coordinate into transverse modes. This
flattens the potential energy surface in the direction normal to
the reaction coordinate.
3.2.2. Smaller Step Sizes.It is very hard to eliminate the

spurious frequencies by simply decreasing the step sizes. For

Figure 5. Detail of the adiabatic ground-state potential energy curves
(in kcal mol-1) versus the arc length along the reaction coordinate (in
Å) for reactions R3 (a) and R4 (b). Solid lines correspond to the standard
VTST calculation. Dotted lines correspond to the RODS VTST
calculation.

Figure 6. Detail of the generalized activation free energy curves atT
) 300 K (in kcal mol-1) versus the arc length along the reaction
coordinate (in Å) for reactions R3 (a) and R4 (b). Solid lines correspond
to the standard VTST calculation. Dotted lines correspond to the RODS
VTST calculation.
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example, using the Euler algorithm and the ACESRATE code,37

we decreased the step size for reaction R3 to 5.29× 10-4 Å.
Although this somewhat decreases the oscillations,VMEP is still
not smooth, andVaG still shows a several kcal/mol dip. We
therefore turn to the RODS algorithm, which we shall apply
using the original 0.0026 Å step size data set that was generated
with the Runge-Kutta algorithm implemented in GAMESS93.
3.3. VTST Calculations Based on the RODS Algorithm.

3.3.1. Adiabatic Potential Energy CurVes and Free Energy of
ActiVation Profiles. In the previous paper9 we showed that the
RODS algorithm gave significant improvement in the stability
of reaction-path calculations for the OH+ H2 and H+ C2H4

reactions. The systems studied in the present paper pose more
difficult challenges because the standard algorithm yields
significant dips in the generalized frequency curves and, for
this reason, also in the adiabatic ground-state potential energy

curves and the corresponding free energy of activation profiles.
Thus these reactions are good tests for the RODS algorithm.
The dips in the generalized-normal-mode frequencies disap-

pear when the RODS algorithm is applied, and all the frequen-
cies exhibit smooth behavior in the range ofs considered in
this paper. The frequencies obtained from the RODS algorithm
do not suffer important crossings and are treated adiabatically.
This translates into smooth vibrationally adiabatic ground-state
potential energy curves, as shown by the dotted curves in parts
a and b of Figure 5 for reactions R3 and R4, respectively.
Analogously, dotted lines in parts a and b of Figure 6 show the
free energy of activation profiles for R3 and R4 at 300 K. Note
that the profile corresponding to reaction R4 is not very smooth,
and this is attributable to the presence in this system of several
low frequencies associated with the movements of water
molecules. The use of a quadratic expansion of the potential
on the dividing surface by the RODS algorithm9 may be
quantitatively inadequate for those low frequencies and for their
effect on the entropic term of the activation free energy.35

3.3.2. Reaction-Path CurVature. Figures 9 and 10 show the
absolute values of the highest reaction-path curvature compo-
nents corresponding to reaction R3 and R4, respectively. These
components have been calculated with eq 2, but using the
direction normal to the RODS dividing surface instead of the
gradient and with the RODS generalized-normal-mode eigen-
vectors. For reaction R3 we can distinguish two different
regions. The first one, the region very close to the saddle point,
has sharp peaks for frequency 1 and a lower peak for frequency
5 due to the interpolation needed in this region, where no
electronic structure calculations have been done, because of the
somewhat big initial step required in an MEP calculation. Apart
from these central peaks, frequencies 5 and 6 in the R3
calculation have another peak ats) 0.13 Å. This other peak
causes the dip on those two frequencies in this region as shown
in Figure 7.
Figure 10 shows the reaction-path curvature component for

reaction R4 that corresponds to frequency 2, which has been
adiabatically correlated along the path. This mode yields the
only significant of the reaction-path curvature vector. This
frequency includes the A and B motions discussed above, as
shown in Figure 8. Again it is clear that the dips that appear
in Figure 8 are caused by the strong coupling between the

Figure 7. Diabatic generalized-normal-mode frequencies (in cm-1)
versus the arc length along the reaction coordinate (in Å) along the
reaction coordinate for the unhydrated reaction R3, based on the
standard algorithm. Only frequencies correlated to reactant modes above
1500 cm-1 are displayed.

Figure 8. Diabatic generalized-normal-mode frequencies (in cm-1)
versus the arc length along the reaction coordinate along the reaction
coordinate (in Å) for the dihydrated reaction R4, based on the standard
algorithm. Only frequencies correlated to reactant modes above 1500
cm-1 are displayed.

Figure 9. Absolute value of the reaction-path curvature components
BmF (in Å-1) versus the arc length along the reaction coordinate (in Å)
for modes 1, 5, and 6 for reaction R3.

Methyl Cation Transfer J. Phys. Chem. A, Vol. 102, No. 19, 19983425



generalized normal mode eigenvectors associated with frequency
2 and the gradient.
We can rationalize the previous paragraphs in the following

way. Let us suppose that a generalized normal modeLm is
strongly coupled to the gradient at a given point on the MEP.
If the reaction path is not followed precisely, a numerical
bobsled effect will carry the calculated path into this direction.
Sharp dips in generalized-normal-modes frequencies along the
reaction path can then arise as a direct consequence of
bobsledding out of the MEP, and this is, in turn, a consequence
of the reaction-path curvature. The RODS algorithm is useful
not only for eliminating the dips but also for analyzing the causes
of those dips.
3.3.3. Canonical Variational Theory.Notice that in both

Figures 5a and 6a the maximum values of the vibrationally
adiabatic potential curves and the free energy of activation
profiles occur very close to where they ocurred in the conven-
tional calculations without RODS, although one could not have
had any confidence in the calculations without RODS, since
the curves themselves were not globally converged. Figures
5b and 6b show more significant differences for reaction R4.
Let s*CVT(T) denote the location of the variational transition

state at temperatureT. Table 3 givess*CVT and the ratio of
TST to CVT rate constants over a wide range of temperatures
for reaction R3. One can see that the CVT transition state
moves farther and farther toward reactants (i.e., toward negative
s) as the temperature increases, and this produces a nonnegligible
variational effect on the rate constant. However the quantitative
effect is 15% or less over the entire temperature range in the
table and is only 1.29 at 2000 K. One way to understand why
the variational effect on the rate constant is small is to rescale
the reaction coordinate in a more physical, system-specific way.
Figure 1 shows that the transition vector is intermediate between

a pure motion of carbon and a relative motion of C primarily
with respect to the three hydrogen atoms bonded to the nitrogen
atom, whose motions would have reduced masses of 12 and
2.4 amu, respectively. Thus we rescaled the reaction coordinate
to an intermediate value of 7 amu; this new reaction coordinate
is calledS. Table 3 shows that for this more physically scaled
reaction coordinate the deviations of the variational transition
state from the saddle point are only 0.02-0.05 Å (0.11 Å at
2000 K). Furthermore, the effective potential energy including
zero-point contributions (i.e., the vibrationally adiabatic ground-
state potential curve6,26) is only 0.6 kcal/mol lower at the 2000
K transition state than at the 200 K one.
Table 4 lists the same variables as in Table 3 but correspond-

ing now to the dihydrated reaction R4. The variational effects
on the rate constants are much bigger for the dihydrated than
for the unhydrated reaction, with TST overestimating the CVT
result by a factor increasing from 2.08 at 200 K to 2.45 at 1000
K.
3.3.4. Tunneling Calculations.We did not present tunneling

calculations in section 3.2 since Figure 5 shows that the adiabatic
potential curves obtained without RODS are unphysical. Table
5 shows the ground-state transmission coefficients based on
calculations in which we have implemented the RODS algo-
rithm. For both ZCT and SCT calculations we evaluated
VaG(s) using the RODS frequencies. In addition to the shape
of the effective potential energy curve, for the SCT calculations
it is also necessary to compute the reaction-path curvature
components. As explained above, we calculated these using
the direction normal to the RODS dividing surface and the
RODS values of the generalized-normal-mode eigenvectors.
For both reactions R3 and R4, the SCT values are signifi-

cantly bigger than the ZCT ones. Since the ZCT transmission
factors are based on tunneling along the MEP, while the SCT
calculations account for corner cutting during tunneling, this
result indicates that corner cutting of the tunneling path is
important in this multidimensional reaction. A similar effect
was observed in the SN2 methyl exchange process between
chloride and methyl chloride, where corner cutting of the
tunneling path was attributed to the hydrogenic motions, but in
that case the tunneling effect and corner cutting effect were both
smaller. For example for reaction R1 at 300 K the ZCT
transmission coefficients are 1.31 and 1.32 forn ) 0 and 1,
respectively, while the SCT transmission coefficients are 1.32
and 1.36.15 One reason for the larger effects in the present case
is that the classical barriers with respect to reactants are much

Figure 10. Absolute value of the reaction-path curvature components
BmF (in Å-1) versus the arc length along the reaction coordinate (in Å)
for mode 2 for reaction R3.

TABLE 3: Variational Transition State Location and
Variational Effect on the Rate Constant for Reaction R3

T (K) s*CVT (Å) kTST/kCVT S*CVT (Å)

200 -0.06 1.13 -0.02
300 -0.07 1.11 -0.03
400 -0.08 1.10 -0.03
600 -0.10 1.11 -0.04
800 -0.12 1.13 -0.05
1000 -0.14 1.15 -0.05

TABLE 4: Variational Transition State Location and
Variational Effect on the Rate Constant for Reaction R4

T (K) s*CVT (Å) kTST/kCVT S*CVT (Å)

200 -0.06 2.08 -0.02
300 -0.06 2.20 -0.02
400 -0.07 2.28 -0.02
600 -0.07 2.37 -0.02
800 -0.07 2.42 -0.02
1000 -0.07 2.45 -0.02

TABLE 5: Ground-State Transmission Coefficients To
Account for Tunneling (RODS Calculation)

reaction R3 reaction R4

T (K) ZCT SCT ZCT SCT

200 2.09 3.34 2.10 17.6
300 1.35 1.66 1.34 3.48
400 1.18 1.32 1.17 2.03
600 1.08 1.13 1.07 1.38
800 1.04 1.07 1.04 1.20
1000 1.03 1.05 1.03 1.12
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higher, 7.2 kcal for R3 and 20.5 kcal for R4, as compared to
3.1 kcal11 and 4.8 kcal15 for R1 withn ) 0 and 1, respectively.
Even with these higher barriers, the values of the transmission
factors obtained in this work for reactions R3 and R4 may seem
surprisingly high, which is probably best interpreted by noting
that Figures 1 and 3 show significant hydrogenic motions in
the transition vectors. These hydrogenic motions are probably
the dominant reason for the large tunneling effects. We note
though that this is formally a heavy-atom tunneling effect (i.e.,
the dominant motion in the reaction coordinate is an atom
heavier than H, D, or T), and significant tunneling of heavy-
atom groups has also been observed in other theoretical
calculations of organic reactions.38

3.3.5. Rate Constants.The final rate constants are given in
Table 6.

4. Conclusions

We have demonstrated that the RODS algorithm allows stable
VTST and tunneling calculations on a new class of reactions
that had proved intractable with earlier algorithms. The
difficulty occurs when there are high-frequency modes strongly
coupled to the reaction coordinate in a region where the energy
is varying slowly along the reaction path, such as near the saddle
point.
The RODS algorithm has also proved useful for accelerating

convergence on a number of other problems.9,39 In the present
case it showed its mettle on an even more intractable case. Its
success in the present very difficult case is very encouraging
for our ability to apply direct dynamics calculations to a wider
variety of interesting applications in the future.
Finally we conclude that variational effects and tunneling

effects can be significant for reactions involving methyl cation
transfer when separated charge is created in the forward or
reverse reaction.
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